2 research outputs found

    Towards accurate instance segmentation in large-scale LiDAR point clouds

    Full text link
    Panoptic segmentation is the combination of semantic and instance segmentation: assign the points in a 3D point cloud to semantic categories and partition them into distinct object instances. It has many obvious applications for outdoor scene understanding, from city mapping to forest management. Existing methods struggle to segment nearby instances of the same semantic category, like adjacent pieces of street furniture or neighbouring trees, which limits their usability for inventory- or management-type applications that rely on object instances. This study explores the steps of the panoptic segmentation pipeline concerned with clustering points into object instances, with the goal to alleviate that bottleneck. We find that a carefully designed clustering strategy, which leverages multiple types of learned point embeddings, significantly improves instance segmentation. Experiments on the NPM3D urban mobile mapping dataset and the FOR-instance forest dataset demonstrate the effectiveness and versatility of the proposed strategy

    Automated and data-driven plate computation for presurgical cleft lip and palate treatment

    No full text
    Purpose Presurgical orthopedic plates are widely used for the treatment of cleft lip and palate, which is the most common craniofacial birth defect. For the traditional plate fabrication, an impression is taken under airway-endangering conditions, which recent digital alternatives overcome via intraoral scanners. However, these alternatives demand proficiency in 3D modeling software in addition to the generally required clinical knowledge of plate design. Methods We address these limitations with a data-driven and fully automated digital pipeline, endowed with a graphical user interface. The pipeline adopts a deep learning model to landmark raw intraoral scans of arbitrary mesh topology and orientation, which guides the nonrigid surface registration subsequently employed to segment the scans. The plates that are individually fit to these segmented scans are 3D-printable and offer optional customization. Results With the distance to the alveolar ridges closely centered around the targeted 0.1 mm, our pipeline computes tightly fitting plates in less than 3 min. The plates were approved in 12 out of 12 cases by two cleft care professionals in a printed-model-based evaluation. Moreover, since the pipeline was implemented in clinical routine in two hospitals, 19 patients have been undergoing treatment utilizing our automated designs. Conclusion The results demonstrate that our automated pipeline meets the high precision requirements of the medical setting employed in cleft lip and palate care while substantially reducing the design time and required clinical expertise, which could facilitate access to this presurgical treatment, especially in low-income countries.ISSN:1861-6410ISSN:1861-642
    corecore